

MOTION CONTROLLER FOR STEPPER MOTORS INTEGRATED CIRCUITS

TRINAMIC Motion Control GmbH & Co. KG
Hamburg, Germany

Closed-Loop

TRINAMIC® Motion Control GmbH & Co. KG
GERMANY

www.trinamic.com

This application note explains functional details of closed-loop motor control of stepper motor (gate) drivers in combination
with the motion control IC TMC4361. It serves as technical background information.

Please refer to the specific product documentation for specific parameter information and configuration instructions.

TABLE OF CONTENTS

1 CLOSED LOOP MOTOR CONTROL .. 2

1.1 CLOSED LOOP MOTOR CONTROL IS NOT FIELD ORIENTED CONTROL... 2
1.2 CLOSED LOOP MOTOR CONTROL PREVENTS STEP LOSS ... 3
1.3 CLOSED LOOP MOTOR CONTROL SAVES ENERGY ... 3
1.4 HOW TO SETUP CLOSED LOOP MOTOR CONTROL ... 3

2 CONNECTING TMC4361 WITH µC, MOTOR (GATE) DRIVER AND ENCODER .. 4

2.1 SIGNAL DESCRIPTION OF THE REQUIRED PINS ... 4
2.2 CONNECTING THE PARTICULAR PINS FOR A MINIMALIST SETUP .. 5
2.3 GENERAL TMC4361 REGISTER SETUP HINTS .. 5
2.4 SAMPLE SETUPS ... 6

3 BASIC SETUP FOR CLOSED LOOP CONTROL .. 9

3.1 GENERAL ENCODER SELECTION AND FILTERING ... 9
3.2 SETUP SPI OUTPUT CONFIGURATION FOR TMC MOTOR (GATE) DRIVERS .. 10
3.3 SENDING COVER DATAGRAMS TO SETUP TMC26X/389 .. 10
3.4 ENCODER SETUP ... 12
3.5 CLOSED LOOP SETUP .. 16
3.6 CLOSED LOOP CALIBRATION .. 17
3.7 LIMITING THE MAXIMUM CORRECTION VELOCITY ... 18
3.8 CLOSED LOOP OPERATION DURING RAMP POSITIONING MODE ... 18
3.9 CLOSED LOOP VELOCITY MODE .. 18

4 CURRENT SCALING DURING CLOSED LOOP MOTOR CONTROL ... 19

4.1 EXAMPLE FOR A COMBINED USAGE OF CLOSED LOOP ANGLE TRACKING AND CURRENT SCALING 21

5 CONSIDERING THE BACK-EMF ... 23

5.1 VELOCITY SETUP .. 24
5.2 VELOCITY CALCULATION .. 26

6 EXAMPLES... 28

7 REVISION HISTORY .. 38

7.1 DOCUMENT REVISIONS .. 38

Application note: Closed Loop

motor control with TMC4361 for stepper
motor drivers

http://www.trinamic.com/

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 2

www.trinamic.com

1 Closed Loop Motor Control
TMC4361 provides closed-loop motor control capabilities for stepper motor (gate) drivers. Typically, current values or step
impulses from TMC4361 for the motor drivers are based only on internal calculations. With the closed loop unit of the
TMC4361 the output currents resp. Step/Dir outputs of the internal step generator will be modified directly in dependence of
feedback data. This feedback data can be obtained from different encoder types like incremental ABN encoders or absolute
SSI or SPI encoders.

1.1 Closed Loop motor control is not Field Oriented Control
The classical field oriented control typically uses a cascade of three control loops. The inner loop controls the motor current.
One level beyond the velocity will be controlled, finally the position. The current control loop assign always a current which
holds a commutation angle of 90° to gain maximum torque. Feedback will be obtained by encoders or by the measurement
of phase currents and voltages with additional help of mathematical models.
The 2-phase closed loop control of TMC4361 follows a different approach than PID control cascades to consider stepper
motor driver characteristics. The ramp generator which assigns target and velocity is independent on the position control
(commutation angle control) which is also independent on the current control. The closed loop motor control scheme is
depicted in the following picture.

Torque Control

ABN
Encoder

Commutatio
n Angle
Control

velocity / position

Ramp Generator

velociy / position / electrical angle

2-Phase
Motor

Field
Weakening

Current
Level

Control

TMC262
& Driver

Stage

Velocity
Control

Position
Control

Control
Parameters

Flags /
Status

Ramp
Parameters

I_PHA
I_PHB

Figure 1.1 Structure of the closed loop motor control

ATTENTION The encoder should be mounted directly on the motor axis for closed loop operation to prevent

unwanted coupling effects. Further on, if the encoder is not mounted directly on the motor, the PID regulation feature should
be used due to the fact that e.g. slipping of belt drives can not be handled correctly with the closed loop motor control.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 3

www.trinamic.com

1.2 Closed Loop motor control prevents step loss
As typical for stepper motor drivers, phase currents will be assigned directly to the motor drivers. This results in current
vector which should be followed by the rotor. The rotor position will be directly sampled by encoder feedback. The closed
loop motor control now monitors the resulting load angle.
Further on, the direction of the current vector will track the rotor position if the load angle should impend to exceed a certain
limit. The result is a load angle which will be never exceed the given limit and as a result no step loss will occur. Thus, the
current vector will follow an overpowered load until the load is reduced. After overcoming the overload, the current control will
assign the required position resp. velocity.

Figure 1.2 Load angle control and current synchronization if the load angle limit (here 45°) is exceeded

NOTE Typically, the load angle limit will be 90° which is the maximum torque which is one full step, but it is also possible

to assign any limit between 0° and 180°.

1.3 Closed Loop motor control saves energy
Besides the load angle tracking, it is also possible to assign different current scale values for different load situations. Thus,
lower load situation can be used to save energy. This is a result of the free adaptable current scaling feature which assigns
the current in dependence on the actual load. During low load phases, lower current levels will be assigned to the motor
driver, whereas the maximum current will be applied if the load limit is reached.

1.4 How to setup closed loop motor control
In the following application note the complete set of closed loop features of TMC4361 will be explained. The general flow can
be divided in three different stages whereas the latter two are optional and can be used independently on each others.
Firstly, the closed loop behavior have to be prepared and established. This general setup process is mandatory and will be
clarified in chapter 3. The two optional refinements of the closed loop motor control will elucidated in chapter 4 (current
scaling capabilities) and chapter 5 (back emf considerations). In the last chapter, further settings for closed loop operations
will be explained.

But before starting with the closed loop setup, the whole die setup have to be connected correctly. In the next chapter 2 the
possible connections between µC, TMC4361, the motor, the encoder and the motor (gate) drivers will be introduced. Further
information about the correct pinning and layout considerations of the different devices can be found in the data sheets of the
particular components. Please note also that the correct SPI and encoder communication schemes for TMC4361 can be find
in corresponding manual where it will explained in detail.

Default position,
no load,

Load angle limit is
set to 45° here

Maximum load
angle of 45° is
reached at left

side, no correction

Maximum allowed
load angle is

exceeded at the left
side, the electrical

field follows the load

Load pulls motor
towards left side,

no correction
required

Load pulls motor
towards right side,

no correction
required

Maximum load angle
of 45° is reached at

right side, no
correction

Maximum allowed
load angle is exceeded

at the right side, the
electrical field follows

the load

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 4

www.trinamic.com

2 Connecting TMC4361 with µC, motor (gate) driver and
encoder

Figure 2.1 Pinning (top view)

2.1 Signal Description of the required pins
Pins Number Function

GND 6, 15,25, 36 Digital ground pin for IOs and digital circuitry

VDD5 5, 26, 37 Digital power supply for IOs and digital circuitry (3.3V… 5V)

VDD1V8 16, 35 Connection of internal generated core voltage of 1.8V

CLK_EXT 38
External Clock input to provide an clock with the frequency fCLK for all
internal operations.

TEST_MODE 34 Test mode input. Tie to low for normal operation.

INTR 33 Interrupt output, programmable PD/PU for wired-and/or

NSCSIN, SCKIN,
SDIIN, SDOIN

2,3,
4,7

SPI interface to the µC.

A_SCLK, ANEG_NSCLK,

B_SDI, BNEG_NSDI,

N, NNEG

40, 1,

10, 11,

21, 22

Encoder interface for incremental ABN encoders and absolute SSI and
SPI encoder types.

STPOUT_PWMA, DIROUT_PWMB
24,

23
Step Direction output for motor stepper drivers

NSCSDRV_SDO, SCKDRV_NSDO,

SDIDRV_NSCLK, SDODRV_SCLK

30,29,

28,27
SPI interface to Trinamic Motor drivers.

In the following the required pin signals of TMC4361 will be identified to establish a complete closed loop system. This is a
minimalist setup. If you want to use the other pin signals with its features, please refer to the TMC4361 manual.

TMC4361-LA

QFN 40

6mm x 6mm

0.5 pitch

1

2

3

4

5

6

7

8

28

29

22

23

24

25

26

27

1811 12 13 14 15 16 17

9

19

30

20

2110

NSCSIN

SCKIN

VDD5

GND

SDIIN

SDOIN

A
_S

C
LK

ANEG_NSCLK

B_SDI

MP2

S
T
O

P
L

H
O

M
E
_R

E
F

G
N

D

V
D

D
1
V

8

S
T
O

P
R

S
T
P
IN

D
IR

IN

S
T
A

R
T

N
F
R
E
E
ZE

B
N

E
G

_N
S
D

I

N
R
S
T

C
LK

_E
X
T

G
N

D

V
D

D
1
V

8

V
D

D
5

T
E
S
T
_M

O
D

E

IN
T
R

T
A

R
G

E
T
_R

E
A

C
H

E
D

S
T
D

B
Y
_C

LK

MP1

SCKDRV_NSDO

SDIDRV_NSCLK

VDD5

GND

SDODRV_SCLK

STPOUT_PWMA

DIROUT_PWMB

NNEG

N

NSCSDRV_SDO

3340 39 38 37 36 35 34 32 31

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 5

www.trinamic.com

2.2 Connecting the particular pins for a minimalist setup
For a minimal closed loop motor control setup please do the following:

- Connect the ground pins and the power supply pins properly. Put at every supply line a
capacitor of 100nF to ground

- Connect the external clock signal to CLK_EXT with a frequency between 4.2 … 32 MHz.
- Disable TEST_MODE by connecting it with ground.
- Connect the INTR output pin to the µC. It is not necessary to evaluate this signal, but it will be

very helpful if so. The setups which will be explained in the next chapters will use this pin.
- Establish an SPI connection from the µC to TMC4361. Thus, connect NSCSIN, SCKIN, SDIIN

and SDOIN with the µC (please refer to the TMC4361 manual to establish a correct working
SPI communication scheme).

- The feedback signals should be connected to the encoder interface pins (A_SCLK,
ANEG_NSCLK, B_SDI, BNEG_NSDI, N, NNEG). Here, three types of encoder feedback signals
can be evaluated: incremental ABN encoders, absolute SSI and SPI encoders. Please refer to
TMC4361 manual to connect encoder feedback signals correctly.

- Connect the StepDir output pins (STPOUT and DIROUT) to any motor driver

- And/Or connect the SPI output signal lines (NSCSDRV_SDO, SCKDRV_NSDO, SDIDRV_NSCLK,
SDODRV_SCLK) to the SPI input pins of a particular TMC motor driver

NOTE The encoder should be mounted directly on the motor axis for closed loop operation to prevent unwanted coupling

effects.

2.3 General TMC4361 register setup hints
Different setups are possible. Please note that any encoder type can be used with any motor driver. The shown examples in
the next section are not determinated for the particular encoder type.
The differential signals of incremental ABN and absolute SSI encoder types are optional. If selected, the signals will be
differentiated by its digital values. There is no differential amplifier in front of the digital inputs inside the chip. Per default,
differential signals are expected. It can be easily switched off by setting the GENERAL_CONF register 0x00 properly (bit12:
diff_enc_in_disable).
Besides setting proper configuration for the SPI output interface via SPIOUT_CONF register 0x04 to provide correct SPI
data for the connected motor drivers, it is also necessary to set the correct encoder type in the GENERAL_CONF register
0x00 (bit 11:10: serial_enc_in_mode).
For further information about the GENERAL_CONF and the SPIOUT_CONF register, please refer to the TMC4361 manual.
Further encoder settings will be available with the ENC_IN_CONF register 0x07 which will be explained in detail in the next
chapters.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 6

www.trinamic.com

2.4 Sample Setups
In the following examples, dashed lines defines optional wires.

Example 1: Motor driver TMC2660/260/261 and an incremental ABN encoder
The TMC26x can be configured and driven completely via the SPI output interface of the TMC4361. The configuration values
for the five registers of the TMC26x have to be addressed to the cover register 0x6C of TMC4361. It will sent automatically
after writing to this register. Thus, no connection from µC to the TMC motor driver is required because the communication
between both devices can be tunneled through TMC4361.
If SPI output will be only used for configuration the StepDir output pins of TMC4361 can be used to provides steps for the
motor driver. The index signal N is also optional.
If no step direction signals are used, the SPIOUT_CONF register 0x04 have to be set accordingly that SPI current datagrams
will be sent during motion.

Figure 2.2 Example 1: Connections between µC, TMC4361, TMC26x, motor M and an incremental encoder which is
connected directly to the motor M

Example 2: Motor driver TMC262 and an absolute SSI encoder
This setup depicts the direct configuration of the stepper driver by the µC. Anyhow, the TMC262 can be also configured and
driven completely via the SPI output interface of the TMC4361 as mentioned in the example before. Using this setup, the
step direction output is necessary to provide step inputs for the motor driver. Also, the negated SSI encoder signal lines are
optional.

ATTENTION TMC4361 supports absolute SSI encoders which provides multiturn as well as singleturn data. In the

latter case, calculation of multiturn data have to be turned on internally (TMC4361) for the most closed loop motor control
applications.

Figure 2.3 Example 2: Connections between µC, TMC4361, TMC262, motor M and an absolute SSI encoder which is
connected directly to the motor M

HINT For three phase stepper motors, TMC389 motor gate drivers can be used. The setup is similar to Example 1 with

an optional StepDir connection or Example 2.

µC TMC4361

NSCSIN

SCKIN

SDIIN

SDOIN

CLK_EXT

INTR

A_SCLK

ANEG_NSCLK

BSDI

BNEG_NSDI

N

NNEG

NSCSDRV_SDO

SCKDRV_NSDO

SDODRV_SCLK

SDIDRV_NSCLK

TMC2660/260/261

STPOUT_PWMA

DIROUT_PWMB

CSN

SCK

SDI

SDO

STEP

DIR

TEST_MODE

SPI_negative_ChipSelect

SPI_clock

SPI_data_output

SPI_data_input

Oscillator_output

Interrupt_input

OA1

OA2

OB1

OB2

M

Encoder

A

A

B

B

N

N

MOSFET

DRIVER STAGE
µC TMC4361

NSCSIN

SCKIN

SDIIN

SDOIN

CLK_EXT

INTR

A_SCLK

ANEG_NSCLK

BSDI

BNEG_NSDI

N

NNEG

NSCSDRV_SDO

SCKDRV_NSDO

SDODRV_SCLK

SDIDRV_NSCLK

TMC262

STPOUT_PWMA

DIROUT_PWMB

CSN

SCK

SDI

SDO

STEP

DIR

TEST_MODE

SPI_negative_ChipSelect_1

SPI_negative_ChipSelect_2

SPI_clock

SPI_data_output

SPI_data_input

Oscillator_output

Interrupt_input M

Encoder

CLK

CLK

DATA

DATA

OA1

OA2

OB1

OB2

HS

BM

LS

RS

x=0°...359°

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 7

www.trinamic.com

Example 3: Motor driver TMC24x/23x and an absolute SPI encoder
This setup covers the connection between TMC4361 and the TMC motor gate drivers TMC248/239/249. Only SPI current
datagrams will be sent, no configuration is necessary. If the stepper motor drivers TMC246/236 are connected no MOSFET
power stage is required. All other connections can be transferred without changes from this setup.
The SPI encoder is not differential intrinsically. Thus, differential inputs are switched off automatically if SPI encoders are
selected in the GENERAL_CONF register 0x00.

ATTENTION TMC4361 supports absolute SPI encoders which provides multiturn as well as singleturn data. In the

latter case, calculation of multiturn data have to be turned on internally for the most closed loop motor control applications.

Figure 2.4 Example 3: Connections between µC, TMC4361, TMC248/239/249, motor M and an absolute SPI encoder
which is connected directly to the motor M. If TMC249/239 is used, no MOSFET driver stage is necessary

Example 4: Motor driver TMC2130 and an incremental ABN encoder
The TMC26130 can be configured and driven completely via the SPI output interface of the TMC4361. The configuration
address values for the registers of the TMC2130 have to be addressed to the cover register 0x6D of TMC4361, whereas the
data value have to be addressed to the cover register 0x6C due to the fact that 40 bits overall have to be sent to TMC2130. It
will sent automatically after writing to this register 0x6C. Thus, no connection from µC to the TMC motor driver is required
because the communication between both devices can be tunneled through TMC4361.
If SPI output will be only used for configuration the StepDir output pins of TMC4361 can be used to provides steps for the
motor driver. The index signal N is also optional.
If no step direction signals are used, the SPIOUT_CONF register 0x04 have to be set accordingly that SPI current datagrams
will be sent during motion.

Figure 2.5 Example 4: Connections between µC, TMC4361, TMC2130, motor M and an incremental ABN encoder
which is connected directly to the motor M.

Example 5: Any motor driver and an incremental ABN encoder
Here, TMC4361 is connected with any motor driver. The configuration have to be done via the µC if the driver do not support
the TMC SPI configuration scheme. However, if the SPI communication is the same as for TMC drivers, the configuration

MOSFET

DRIVER STAGE
µC TMC4361

NSCSIN

SCKIN

SDIIN

SDOIN

CLK_EXT

INTR

A_SCLK

ANEG_NSCLK

BSDI

BNEG_NSDI

N

NNEG

NSCSDRV_SDO

SCKDRV_NSDO

SDODRV_SCLK

SDIDRV_NSCLK

TMC248/249/239

STPOUT_PWMA

DIROUT_PWMB

CSN

SCK

SDI

SDO

TEST_MODE

SPI_negative_ChipSelect_1

SPI_negative_ChipSelect_2

SPI_clock

SPI_data_output

SPI_data_input

Oscillator_output

Interrupt_input M

Encoder

SPI_CLK

SPI_CSN

SPI_data_output

SPI_data_input

OA1

OA2

OB1

OB2

HA

LA

SRA

x=0°...359°

µC TMC4361

NSCSIN

SCKIN

SDIIN

SDOIN

CLK_EXT

INTR

A_SCLK

ANEG_NSCLK

BSDI

BNEG_NSDI

N

NNEG

NSCSDRV_SDO

SCKDRV_NSDO

SDODRV_SCLK

SDIDRV_NSCLK

TMC2130

STPOUT_PWMA

DIROUT_PWMB

CSN

SCK

SDI

SDO

STEP

DIR

TEST_MODE

SPI_negative_ChipSelect

SPI_clock

SPI_data_output

SPI_data_input

Oscillator_output

Interrupt_input

OA1

OA2

OB1

OB2

M

Encoder

A

A

B

B

N

N

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 8

www.trinamic.com

can be tunneled through TMC4361. In most cases, step direction output is required. Only if DAC are connected directly to
the TMC4361 SPI output current datagrams can be used for motor motion. Please refer to TMC4361 for further information.

Figure 2.6 Example 5: Connections between µC, TMC4361, any motor driver stage, motor M and an incremental ABN
encoder which is connected directly to the motor M.

µC TMC4361

NSCSIN

SCKIN

SDIIN

SDOIN

CLK_EXT

INTR

A_SCLK

ANEG_NSCLK

BSDI

BNEG_NSDI

N

NNEG

NSCSDRV_SDO

SCKDRV_NSDO

SDODRV_SCLK

SDIDRV_NSCLK

ANY DRIVER

STPOUT_PWMA

DIROUT_PWMB

STEP

DIR

TEST_MODE

SPI_negative_ChipSelect

SPI_clock

SPI_data_output

SPI_data_input

Oscillator_output

Interrupt_input

OA1

OA2

OB1

OB2

M

Encoder

A

A

B

B

N

N

Interface:

µCßàMotor driver

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 9

www.trinamic.com

3 Basic setup for closed loop control
In the following the basic setup for TMC4361 closed loop operation will be explicated in detail (please keep the introduced
sequence of datagrams to avoid unwanted behavior). Ensuing datagrams (from the µC to TMC4361) will be written as
hexadecimal order extensions to the current values of the particular registers. Please note the most significant bit has to be
‘1’ for writing access to the register. Please refer to the TMC4361 manual for further information. For example, if bit13 of a
given GENERAL_CONF register 0x00 hast to be set to ‘1’ and bit18 to ‘0’, the following sequence result in the required
datagram:
 GENERAL_CONF && 0xFFFFFBFFFF || 0x8000002000.

GENERAL_CONF (example) = 0x0012345678
&& 0xFFFFFBFFFF à 0x0012305678
|| 0x8000002000 à 0x8012307678

Now, 0x8012307678 can be sent to TMC4361 and the particular switches will be set.

3.1 General encoder selection and filtering
As explained, different encoder types (selection by setting bit11:10 of GENERAL_CONF register 0x00) will be supported.
There is also an option to disable differential inputs by enabling bit12 of GENERAL_CONF register 0x00. Per default,
differential inputs are enabled, except for SPI encoders!
Following possibilities are practicable:

Encoder type Differential output Order µCàTMC4361

ABN encoder
 GENERAL_CONF && 0x00FFFFE3FF || 0x8000000000

- GENERAL_CONF && 0x00FFFFE3FF || 0x8000001000

SSI encoder
 GENERAL_CONF && 0x00FFFFE3FF || 0x8000000400

- GENERAL_CONF && 0x00FFFFE3FF || 0x8000001400

SPI encoder - GENERAL_CONF && 0x00FFFFF3FF || 0x8000000C00

ATTENTION Before absolute encoders are assigned as active (by setting GENERAL_CONF accordingly), please

configure the data transfer scheme properly. Therefore, changing the serial encoder data input register ENC_IN_DATA 0x08
will lead in a different bit length for the data transfer and the corresponding interpretation of the data by TMC4361. Further
on, multi cycle data and gray code enabling can be set by adapting bit17 and bit18 of ENC_IN_CONF register 0x07. Bit19
will change the interpretation of the alignment of the data.
By setting the bit count of the data transfer, the number of clock cycles which will be generated by TMC4361 for the serial
encoder are automatically assigned. The timing of the data transfer/clock can be adapted by changing the registers 0x56
(Low and High level duration), 0x57 and 0x58 which will tune required delay times for the absolute encoder data transfer.
Please refer to TMC4361 manual for further information.
Finally, SPI data transfer of SPI encoders can be changed by using bit20 and bit21 of the ENC_IN_CONF register 0x07.

HINT Encoder input signals can be digitally filtered using the INPUT_FILT_CONF register 0x03:

- Encoder input sample rate: INPUT_FILT_CONF(2:0) and
- Encoder input filter length: INPUT_FILT_CONF(6:4)).
The filter settings can be set freely. Please refer to the TMC4361 manual for further information.

ATTENTION The microstep per fullsteps MSTEP_PER_FS MUST be set to 256 in register 0x0A in the case of closed

loop control.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 10

www.trinamic.com

3.2 Setup SPI output configuration for TMC motor (gate) drivers
If current datagrams should be sent from TMC4361 to TMC motor (gate) drivers and/or configuration datagrams from the µC
through TMC4361 to TMC motor (gate) drivers, the SPI output have to set appropriately in the SPIOUT_CONF register 0x04.
The setup depends on the motor (gate) driver which is connected to TMC4361. In the following summary the timing is
equally:

- SPI_OUT_BLOCK_TIME = 8 clock cycles
- SPI_OUT_LOW_TIME = 4 clock cycles
- SPI_OUT_HIGH_TIME = 4 clock cycles

This will result in an eightfold slower data rate than the base clock frequency. Faster and slower transfers are possible and
depends on the board layout. The COVER_DATA_LENGTH will be set to 0 to enforce automatic assign at which the bit
length for cover datagrams is adapted in dependence of the selected TMC motor (gate) driver.
Furthermore, the bits12:4 can be used to adapt the communication with the driver further.
For further information about driver specific settings and information about the timing, please refer to TMC4361 manual.

TMC motor (gate)
driver

Using only StepDir for
motion control

Order µCàTMC4361

TMC23x - SPIOUT_CONF && 0x0000001FF0 || 0x8484400008

TMC24x - SPIOUT_CONF && 0x0000001FF0 || 0x8484400009

TMC26x

- SPIOUT_CONF && 0x0000001FE0 || 0x848440000A

 SPIOUT_CONF && 0x0000001FE0 || 0x848440000B

TMC389

- SPIOUT_CONF && 0x0000001FF0 || 0x848440001A

 SPIOUT_CONF && 0x0000001FF0 || 0x848440001B

TMC21xx

- SPIOUT_CONF && 0x0000001FE0 || 0x848440000D

 SPIOUT_CONF && 0x0000001FE0 || 0x848440000C

3.3 Sending cover datagrams to setup TMC26x/389
TMC24x/23x are not configurable via register request. Other TMC stepper motor (gate) drivers can be configured using the
cover datagram feature of TMC4361. The mechanism will be explained with the help of TMC26x/389. Thereby, five registers
have to be set to put the driver into operation. To avoid polling for an executed cover datagram the usage of the INTR output
pin is advisable.
After configuring the interrupt polarity (default: low active interrupt), the COVERDONE event (bit25) have to be assigned as
INTR output in the INTR_CONF register 0x0D.
Then, the status event register 0x0E have to cleared. This can be done easily by reading it. Now, every interrupt indicates a
sent cover datagram. The next cover datagram can be initiated then. After every interrupt, the status event register 0x0E
have to be read to clear the interrupt.
The read response of the driver can be read out at the COVER_DRV_LOW register 0x6E. Anyhow, this is not necessary as
the status bits will be assign automatically to the status flag register 0x0F of TMC4361.
In the following the sequence of datagrams from µC to TMC4361 will be displayed with an example for a TMC26x/389
setup. Important values to configure are the chopper settings (CHOP_CONF), the current scale (CS) bit which will determine
the maximum current limit at all for the motor (gate) driver, the StepDir disable bit (SDOFF) and the sense resistor value
(VSENSE). All register for the TMC26x/389 should be adapted to the current board setup. Please refer the TMC26x/389
manual for detailed information.

Sequence Comments Order µCàTMC4361

1. Assign COVERDONE as INTR 0x8D02000000

2. Clear events 0x0E00000000

3.
Set the DRVCTRL register of TMC26x/389 (cover datagram): single edge steps,
disable step interpolation, microstep resolution: 256

0xEC00000000

4. Wait for an interrupt and then clear events. …0x0E00000000

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 11

www.trinamic.com

5.
Set the CHOPCONF register of TMC26x/389 (cover datagram): tbl=36, standard
chopper, HDEC=16, HEND=11, HSTR=1, TOFF=5, RNDTF=off

0xEC00090585

6. Wait for an interrupt and then clear events. …0x0E00000000

7. Disable the SMARTEN register of TMC26x/389 (cover datagram) 0xEC000A0000

8. Wait for an interrupt and then clear events. …0x0E00000000

9.
Set the SGCSCONF register of TMC26x/389 (cover datagram): SGT=0,
CS=31 (maximum value!)

0xEC000C001F*

10. Wait for an interrupt and then clear events. …0x0E00000000

11. a)

Set the DRVCONF register of TMC26x/389 (cover datagram): SLPH=3, SLPL=3,
DISS2G=off, TS2G=0-3.2us, SDOFF=on, VSENSE=0*

- Use this configuration if TMC26x/389 should evaluate current
datagrams and not StepDir input signals)

- TMC4361 SPI_OUT CONF register has to be set accordingly

0xEC000EF080*

11. b)

Set the DRVCONF register of TMC26x/389 (cover datagram): SLPH=3, SLPL=3,
DISS2G=off, TS2G=0-3.2us, SDOFF=off, VSENSE=0*

- Use this configuration if TMC26x/389 should evaluate StepDir input
signals and not current datagrams

- TMC4361 SPI_OUT CONF register has to be set accordingly

0xEC000EF000*

12. Wait for an interrupt and then clear events. …0x0E00000000

* Setting appropriate current settings:
The current settings are dependent on the used motor type. In the following two examples are explained, how to set correct
current settings for CS (current scaling) and VSENSE of TMC26x. The current examples are configured as regards peak
current due to the fact that these settings of TMC26x will provide the maximum current which can be reached:

Example 1: Conditions: Motor current IRMS = 0.85 A, Sense resistor: RSENSE = 0.22 Ω
 Settings: VSENSE = 0 à Sense resistor voltage VFS = 305mV (FS - Full scale)
 à Maximum possible current IFS = VFS / RSENSE = 1.39 A
 IPEAK = IRMS ∙ √2 = 1.2 A à CS = IPEAK / IFS ∙ 32 – 1 = 26

 Cover datagram at sequence no. 9: 0xEC000C001A and
 Cover datagram at sequence no. 11a): 0xEC000EF080 or
 Cover datagram at sequence no. 11b): 0xEC000EF000

Example 2: Conditions: Motor current IRMS = 0.5, Sense resistor: RSENSE = 0.15 Ω
 Settings: VSENSE = 1 à Sense resistor voltage VFS = 165mV
 à Maximum possible current IFS = VFS / RSENSE = 1.1 A
 IPEAK = IRMS ∙ √2 = 0.71 A à CS = IPEAK / IFS ∙ 32 – 1 = 19

 Cover datagram at sequence no. 9: 0xEC000C0013 and
 Cover datagram at sequence no. 11a): 0xEC000EF0C0 or
 Cover datagram at sequence no. 11b): 0xEC000EF040

ATTENTION If no closed loop current scaling (chapter 4) is used, current settings should match the RMS current and

not the peak current to avoid overcurrents during motion with a low velocity!

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 12

www.trinamic.com

3.4 Example configuration for TMC2130
In the following the sequence of cover datagrams from µC to TMC4361 will be displayed with an example for a TMC2130
setup. The start-up sequence is the same as explained for the TMC26x, except that both cover registers (COVER_LOW
0x6C and COVER_HIGH 0x6D) have to be used as 40 bits overall are sent and received to / from TMC2130. The read
response of the driver can be read out at the COVER_DRV_LOW register 0x6E and COVER_DRV_HIGH 0x6F. Important
values to configure are the chopper settings (CHOP_CONF) including VSENSE, the current scale (CS) bit which will
determine the maximum current limit at all for the motor (gate) driver, the StepDir disable bit (direct_mode) of GCONF
register. Any other registers for the TMC2130 should be adapted to the actual board setup. Please refer the TMC2130
manual for detailed information.

Sequence Comments Order µCàTMC4361

1. Assign COVERDONE as INTR 0x8D02000000

2. Clear events 0x0E00000000

3. a)

Set the GCONF 0x00 register of TMC2130 (cover datagrams): direct_mode=0 à
StepDir mode on

- Use this configuration if TMC26x/389 should evaluate current
datagrams and not StepDir input signals)

- TMC4361 SPI_OUT CONF register has to be set accordingly

0xED00000080

0xEC00000000

3. b)

Set the GCONF 0x00 register of TMC2130 (cover datagrams): direct_mode=1 à
StepDir mode off

- Use this configuration if TMC26x/389 should evaluate current
datagrams and not StepDir input signals)

- TMC4361 SPI_OUT CONF register has to be set accordingly

0xED00000080

0xEC00010000

4. Wait for an interrupt and then clear events. …0x0E00000000

5.
Set the CHOPCONF register 0x6C of TMC2130 (cover datagrams):
256 microsteps, vsense=0, TBL=36 clock cycles, spread cycle chopper, HEND=1,
HSTRT=2, TOFF=3

0xED000000EC

0xEC00010223**

6. Wait for an interrupt and then clear events. …0x0E00000000

7. a)

Set the IHOLD_IRUN register 0x10 of TMC2130 (cover datagram):
IHOLD_DELAY=5, IHOLD=31, IRUN=31

- SPI mode (Step Dir mode off): Set IHOLD to maximum as all incoming
current datagrams are scaled by this value

0xED00000090

0xEC00051F1F**

7. b)
Set the IHOLD_IRUN register 0x10 of TMC2130 (cover datagram):
IHOLD_DELAY=5, IHOLD=15, IRUN=31 (maximum value!)

0xED00000090

0xEC00050F1F**

8. Wait for an interrupt and then clear events. …0x0E00000000

** Setting appropriate current settings:
The current settings are dependent on the used motor type. In the following two examples are explained, how to set correct
current settings for IRUN and/or IHOLD (current scaling) and VSENSE of TMC2130. The current examples are configured as
regards peak current due to the fact that these settings of TMC26x will provide the maximum current which can be reached:

Example 1: Conditions: Motor current IRMS = 0.85 A, Sense resistor: RSENSE = 0.22 Ω
 Settings: VSENSE = 0 à Sense resistor voltage VFS = 320mV (FS - Full scale)
 à Maximum possible current IFS = VFS / (RSENSE + 20mΩ) = 1.33 A
 IPEAK = IRMS ∙ √2 = 1.2 A à CS = IPEAK / IFS ∙ 32 – 1 = 27

 Cover datagrams at sequence no. 5: set vsense=0
 Cover datagrams at sequence no. 7a): 0xEC00051B1B or
 Cover datagrams at sequence no. 7b): 0xEC0005xx1B

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 13

www.trinamic.com

3.5 Encoder setup
Before setting the encoder resolution, the correct encoder setup has to be adapted.
Incremental ABN encoder
The N event configuration can be adapted in the ENC_IN_CONF register 0x07: bits11:2 have to be set particularly.
Please note that clear_on_n (bit1) must not be set because clearing the external position ENC_POS will definitely disrupt
correct closed loop behavior in most cases.
Absolute encoder
Bit12 and bit13 of ENC_IN_CONF register 0x07 enable multiturn data if the encoder supports this feature. If only singleturn
data is transmitted from the encoder, in closed loop motor control applications multiturn data has to be calculated by
TMC4361. Thus, set bit16 (calc_multi_turn_behav) of register 0x07 to ‘1’. This way, TMC4361 will add or remove one
revolution if an overflow for the singleturn data is recognized. This will lead to reliable results as long as the difference
between the values of consecutive data transfers do not exceed the half of one revolution!

HINT To restrict TMC4361 to take over valid data from serial encoder data transfer, bit31 (serial_enc_variation_limit) of

ENC_IN_CONF register 0x07 can be set to ‘1’. That way, a difference of more than one eighth of the revolution between
consecutive data (due to erroneous transfer or due to a slow data transfer related to the motor velocity) will lead to a
rejection of the last data.

3.5.1 Encoder resolution
A correct setup of the encoder resolution is mandatory. First of all, the full step per revolution have to be setup properly.
Thus, the FS_PER_REV value in the STEP_CONF register 0x0A have to be checked (default: 200 full steps per revolution)
and, if necessary, changed. Further on, in the register the microsteps per full MSTEP_PER_FS steps can be adapted. For
best performance, it is recommended not to change the default 256 micro steps per full step.

Necessarily, the encoder resolution ENC_IN_RES (register 0x54) have to be set. This value is defined as encoder steps
per revolution.
The internally calculated microstep per encoder step constant will be able to read out at 0x54(30:0) with 15 digits and 16
decimal places. This value represents the number of microsteps which will be added to the encoder position ENC_POS with
every detected encoder step for incremental encoders. For absolute encoder, this constant will be multiplied with the current
angle which will also result in an encoder position ENC_POS representing microsteps. The encoder constant will be
calculated as follows:
 ENC_CONST = MSTEPS_PER_REV ∙ FS_PER_REV / ENC_IN_RES.

Per default, the decimal places represent binaries. But for some application, it will be better use a decimal representation of
the decimal places. If so, the decimal places 0x54(15:0) are calculated as 1/10000.
If calculated automatically, TMC4361 will take the representation which will suit the best. Only, if both representation are not
able to map the encoder constant to exactly 16 decimal places, bit0 of the ENC_IN_CONF register will define the binary
(bit0=’0’) or decimal (bit0=’1’) representation. Please note that a not exact encoder constant can lead the encoder
mismatches in the long run. In the following, two examples clarifies the differences between both representations:

Example 1:
An incremental encoder with 8192 pole pairs will generate 32768 encoder steps per revolution due to 4 possible AB
transition per pole pair. Thus, ENC_IN_RES have to be set to 32768. With 256 microsteps per full step and 200 full steps
per revolution, this leads to an encoder constant of ENC_CONST = 1.5625. This value can be exactly represented as binary
number which can be read out then at 0x54: ENC_CONST = 0x00019000

Example 2:
An incremental encoder with 500 pole pairs will generate 2000 encoder steps per revolution due to 4 possible AB
transition per pole pair. Thus, ENC_IN_RES have to be set to 2000. With 256 microsteps per full step and 200 full steps
per revolution, this leads to an encoder constant of ENC_CONST = 25.6. Six tenth can not be exactly represented with 16
binary decimal places. Therefore, the decimal representation will be used as ENC_CONST with 6000/10000: ENC_CONST
= 0x00191770

If it is necessary to calculate the encoder constant manually, it can be written directly to 0x54 be setting the MSB of this
register to ‘1’. For example, if the encoder constant should be set to 25.6 manually, write 0x80191770 to register 0x54.
Because this is a decimal representation, bit0 of 0x07 have to be set to ‘1’. Otherwise, the encoder step position will be
calculated with a binary encoder constant.

Finally, the encoder direction should match the motor direction. This can be reached by various settings. Thus, please
move the motor with in an open loop setup in any direction (the encoder resolution has to be set before). If the internal
position X_ACTUAL and the external position ENC_POS will not differ in its signs, the directions of the motor and the
encoder match. No change are necessary.
As opposed to a match, following possibilities for a correct setup are available if motor and encoder diverge:

1. Invert the encoder direction by setting bit29 of ENC_IN_CONF register 0x07 or
2. Invert the internal motor direction by setting bit28 of GENERAL_CONF register 0x00 or

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 14

www.trinamic.com

3. Interchange the motor cables or

4. Remount the encoder.
It is recommended to use one of the two first setup changes as no hardware change will be required.

3.5.2 Encoder compensation
Systematical encoder misalignments can be compensated on chip. Especially magnetic encoders have high variances on
the output value even if the encoder is correctly mounted. A deficiently installed encoder can send values which do not result
in a circle. Often, the deviation from the real position results in a new function which is similar to a sine function. Adding
offset that follows a triangular shape can improve the encoder value evaluation significantly (refer to Figure 3.1).

Figure 3.1 Implemented triangular function to compensate for encoder misalignments

The left graph illustrates the difference between encoder position and real position (blue dots - position deviation) as a µstep
function within one encoder revolution of 256 microsteps. Blending in a proper triangular function whose function values will
be added to the position deviation values will result in another graph at the right side whose position deviations are now
minimized significantly compared to the uncompensated values. TMC4361 provides this simple compensation algorithm
which adds automatically an microstep offset to the internal microstep counter ENC_POS if turned on. Only three parameter
have to be assigned properly in register 0x7D:

- ENC_COMP_XOFFSET (XOFF): the 16bit unsigned abscissa value which is normalized to the
number of microsteps per revolution

- ENC_COMP_YOFFSET (YOFF): the 8bit signed ordinate value of the minimum of the triangular
function in microsteps

- ENC_COMP_AMPL (AMPL):the 8bit unsigned maximum amplitude value of the triangular
function which must not exceed 127!

ATTENTION The triangular function must be opposed to the position deviation function to compensate properly which

means that the maximum of the position deviation function will lead to the minimum of the triangular function and vice versa.

ATTENTION The abscissa value of the maximum of the triangular function is defined a half revolution distant to the

minimum!

HINT The compensation algorithm have not to be turned on explicitly. It is switched on all the time, but as long as the

encoder compensation registers are set to 0, all values will be compensated with 0.

HINT To obtain the correct value for ENC_COMP_XOFFSET the minimum of the triangular function have to be assigned.

The function argument of this minimum is the X offset. As this register is normalized to the microstep count per revolution,
the value have to be divided by the number of microsteps per revolution and then multiplied by 2^16.

Example 1:
A motor with 200 fullsteps and 256 microsteps per fullstep has 51200 microsteps per revolution. The minimum for the
triangular function is located at (10000 microsteps; -12 microsteps) with a maximum deviation of 65 microsteps
 - ENC_COMP_XOFFSET = 10000 / 51200 * 2^16 = 12800
 - ENC_COMP_YOFFSET = -12

-8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200 250

p
o

si
ti

o
n

 d
e

vi
at

io
n

µsteps

position deviation

compensation function

YOFF
AMPL

XOFF

-8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200 250

p
o

si
ti

o
n

 d
e

vi
at

io
n

µsteps

position deviation

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 15

www.trinamic.com

 - ENC_COMP_AMPL = 65 - (-12) = 77
The maximum of the triangular function will be then at (35600;65)

Example 2:
A motor with 72 fullsteps and 256 microsteps per fullstep has 18432 microsteps per revolution. The minimum for the
triangular function is located at (11000 microsteps; -54 microsteps) with a maximum deviation of 8 microsteps
 - ENC_COMP_XOFFSET = 11000 / 18432 * 2^16 = 39111
 - ENC_COMP_YOFFSET = -54
 - ENC_COMP_AMPL = 8 - (-54) = 62
The maximum of the triangular function will be then at (1784;65)

Automatic Linearization of encoder misalignments
Following sequence suggest how to obtain compensation data for a given setup:

1. Setup the motor driver and the encoder properly (no load!, maximum current)
2. Move motor to ENC_POS = 0.
3. Set X_ACTUAL = 0.
4. Move in one direction for several revolutions and save the ENC_POS_DEV values at every

fullstep position (MSCNT = 128/384/640/896)
5. Move backwards and save the same data and generate the average over both direction and

the several revolutions
6. Calculate the minimum value and the maximum amplitude of the triangular function by

comparing the minimum and maximum of the stored position deviation values
7. Set the compensation value register 0x7D properly
8. Move again in both direction and check if the compensation is working properly. If not,

repeat from 2.
9. After later executed power-ups, it has to be verified that the positions XACTUAL and

ENC_POS do not differ to the settings of the initialization process (2.-7.)

HINT Due to the fact that the maximum of the triangular function is located a half revolution away from the minimum, it

can be advisable to try different settings for the compensation register around the minimum to get the best compensation
result if the real position deviations do not fit exactly to sine function!

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 16

www.trinamic.com

3.6 Closed Loop setup
After setting the TMC4361 encoder properties properly and before calibrating the closed loop operation, closed loop
properties should be setup accordingly. For a basic closed loop motor control operation, only a few values have to be set:

1. Dependent on the actual mismatch between encoder position ENC_POS and internal position XACTUAL, the
external field which will be initiated by TMC4361 will be altered by an angle offset to overcome the mismatch. This
maximum commutation angle CL_BETA 0x1C(8:0) can be set in a range between 0 and 511 microsteps whereas
255 microsteps are equal to 90° when 256 microsteps per full step are set. As long as the position mismatch
exceed CL_BETA microsteps the maximum commutation angle will be used to resolve the position mismatch.
Because an offset of 90° to the actual motor angle are equivalent to the largest force which can be applied to the
motor, CL_BETA = 255 (default value) would fit for best performance. Higher angle values will result in a field
weakening operation which can lead to higher velocities but lesser force.

HINT If the maximum difference CL_BETA is reached, regulation will be continued with a maximum commutation angle

of CL_BETA! An event CL_MAX will be generated in this case.

2. The closed loop proportional term CL_DELTA_P 0x5C defines the response to a position mismatch as long as the

maximum commutation angle is not reached. The higher this value the stronger the response to position
mismatches, but also the higher the possibility for oscillations. Higher values means also that the maximum
commutation angle CL_BETA will be reached with a smaller position mismatch (see Figure 3.2). The
representation of CL_DELTA_P consists of 8 digits and 16 decimal places, e.g. CL_DELTA_P = 0x018000 = 1.5
will result in a commutation angle which is 1.5 multiplied to the current position mismatch. In the following, three
different setups are illustrated in a table to clarify the differences of various settings (microsteps per fullstep = 256):

Setup No: 1 2 3

CL_BETA = 255 (0x0FF) 200 (0x0C8) 275 (0x113)

CL_DELTA_P = 1.5 (0x018000) 0.9375 (0x00F000) 2.75 (0x02C000)

Position mismatch
(microsteps/angle)

Commutation angle
(microsteps/angle) (red entry - maximum angle reached!)

36 / 12.7° 54 / 19.0° 34 / 12.0° 99 / 34.8°

96 / 33.8° 144 / 50.6° 90 / 31.6° 264 / 92.8°

148 / 52.0° 222 / 78.0° 139 / 48.9° 275 / 96.7°

210 / 73.8° 255 / 90° 197 / 69.3° 275 / 96.7°

266 / 93.5° 255 / 90° 200 / 70.3° 275 / 96.7°

Figure 3.2 Calculation of the corrected target position with CL_BETA = 255 (90°) and 256 microsteps per full step

3. Finally, setting CL_TOLERANCE 0x5F (microsteps) properly will result in a mismatch range between
-CL_TOLERANCE and +CL_TOLERANCE where CL_DELTA_P is automatically equal to 1.0. It is recommended
to set CL_TOLERANCE at least slightly higher than the ENC_CONST to avoid too fast responses (if
CL_DELTA_P > 1.0) on encoder transitions due to encoder noise.

HINT If the difference between internal and external position is inside of the range created by the CL_TOLERANCE

value, a flag CL_FIT_F will be released. If the ENC_POS_DEV have been greater than the tolerance before, an event
CL_FIT will be also generated to indicate a concordance of internal and external position after a mismatch.

Position deviation
ENC_POS_DEV

X_TARGET

X_TARGET - 45°

45° 90° 135°-45°-90°-135°

0°

CL_DELTA_P = 1

CL_DELTA_P = 2

CL_DELTA_P = 4

Corrected
X_TARGET

X_TARGET - 90°

X_TARGET + 45°

X_TARGET + 90°

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 17

www.trinamic.com

3.7 Closed Loop calibration
Now, the basic setup is ready to drive in closed loop motor control modus. Thus, turning on closed loop operation by setting
the regulation_modus switch = b’01 of ENC_IN_CONF register 0x07 should be sufficient as calibration of closed loop
operation will be done automatically when closed loop modus is switched on.
Anyhow, for best performance of a compensated encoder the following calibration sequence should be followed:

1. Disable any current scaling.

2. Move to any full step position in open loop mode which means that the absolute current values of the sine and
cosine waveform lookup table should be equal: |CURRENTA| = |CURRENTB| (CURRENTA register 0x7A(8:0);
CURRENTB register 0x7A(24:16)). Using the TMC4361 default waveform and 256 microsteps per full step, full
step position is reached if XACTUAL mod 256 = 128, e.g. XACTUAL = 128 or 384 or -640 or 14976, … Here, the
most stable position should be reached as the current through all inductors amount the same absolute value which
leads to an equal force from each side affecting the rotor.

ATTENTION If the motor (gate) driver uses its own sine wave (e.g. using TMC26x with StepDir input), move

to a full step position of the motor driver!

3. Ideally, the encoder position ENC_POS should not switch if possible. If the encoder position jiggles, try the next full
step position.

4. Then, turn on closed loop operation (bit23:22 of ENC_IN_CONF 0x07 = b’01) and calibrate immediately (bit24 of
ENC_IN_CONF 0x07 = ‘1’):
 ENC_IN_CONF && 0x00FE3FFFFF || 0x8701400000

5. After waiting for at least 10us, turn off closed loop calibration:
 ENC_IN_CONF && 0x00FE3FFFFF || 0x8700400000

Now, closed loop operation is active and TMC4361 will always try to match the external ENC_POS with the internal position
XACTUAL. The current difference between both can be read out at the ENC_POS_DEV register 0x52. During closed loop
operation, the value of ENC_POS_DEV considers the closed loop offset CL_OFFSET which can be read out at register
0x59. This value is the position difference during the calibration process. It is readable, but also writeable.

ATTENTION Writing the closed loop offset CL_OFFSET register 0x59 during closed loop operation should be

avoided under any circumstances except for calibration purpose.

ATTENTION To avoid recalibration at restart after switching off closed loop operation, turn on closed loop and then

write back the stored CL_OFFSET value to its register. The application should move in the same manner as before.

HINT Using CL_OFFSET can also avoid the recalibration of the application after a shutdown. Especially systems with

absolute encoders would benefit of this recalibration option. Additionally, if XACTUAL and the number of revolutions would
written back to ENC_POS (if absolute encoders are turned on) before starting closed loop operation, the whole application
would find its last stable closed loop position, even if the motor have been moved during off-time.

ATTENTION But beware, do not use this option for recalibration if an incremental encoder is used when the N signal is

not involved to get the correct absolute position in one revolution!

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 18

www.trinamic.com

3.8 Limiting the maximum correction velocity
After turning on closed loop motor control and calibrating, TMC4361 will always try to counter position mismatches. If no
other settings are made, the correction will be assigned as fast as possible. To limit the catch-up velocity, the internal PI
regulator of TMC4361 can be used. Try to assign different values for the following parameters to fit for the best performance
of the closed loop velocity limitation:

- The proportional term CL_VMAX_CALC_P register 0x5A and the integral term CL_VMAX_CALC_I register 0x5B
define the PI regulator for the maximum velocity limitation. The PID regulator will be updated every 128th clock
cycle (update frequency = fCLK/128). The integral term is an product of CL_VMAX_CALC_I / 256 ∙ PID_ISUM / 256.
The current integrator sum PID_ISUM can be read out at register 0x5B.

- By setting the value of the PID_DV_CLIP register 0x5E, the maximum velocity value (pps - pulses per second, no
decimal places!) which will be added/subtracted (in dependence of the internal direction) to the current internal
velocity VACTUAL will be defined. For instance, if PID_DV_CLIP is set to 20000 pps (0x00004E20) and
VACTUAL = 100000.0 pps, the resulting maximum catch-up velocity will not exceed 120000 pps. Hence, setting
PID_DV_CLIP to 0 will result in a static behavior where no catch-up is possible.

- It is also possible to set the value of the PID_I_CLIP register 0x5D(14:0) which is the clipping parameter for
PID_ISUM the real clipping value PID_ISUMCLIPPED = PID_ICLIP ∙ 216. The maximum value of PID_I_CLIP should
meet the condition PID_I_CLIP ≤ PID_DV_CLIP / PID_I. If the error sum PID_ISUM is not clipped, it is increased
with each time step by PID_I • PID_E. This continues as long as the motor does not follow.

If the values are set properly, velocity limitation can be turned on by activating (=’1’) the cl_vlimit_en switch of the
ENC_IN_CONF register 0x07:

 ENC_IN_CONF && 0x00FE7FFFFF || 0x8708400000.

In case position deviation at the end of an internal ramp calculation is still left, the SPI and/or Step/Dir output ramp for
correction is a linear deceleration ramp, independently from the preset ramp type. This final ramp for error compensation is a
function of ENC_POS_DEV and PI control parameters (CL_VMAX_CALC_P, CL_VMAX_CALC_I, PID_I_CLIP, and
PID_DV_CLIP).

3.9 Closed loop operation during ramp positioning mode
If closed loop operation is turned on during internal positioning mode, TARGET_REACHED status will not be activated as
long as the absolute value of the position mismatch ENC_POS_DEV will exceed the assigned value in the
CL_TR_TOLERANCE register 0x52. This ensures that even when the internal ramp has been finished, no target reached
flag/event is released as long as the external position will not match the internal position within the given tolerance range.

3.10 Closed loop velocity mode
It is also possible to use turn on the closed loop velocity mode by switching on bit28 of the ENC_IN_CONF register 0x07:

 ENC_IN_CONF && 0x00FE7FFFFF || 0x8710400000.

During this modus, XACTUAL will be manipulated if the position difference ENC_POS_DEV exceeds 768 microsteps. If so,
XACTUAL will be changed for 256 microsteps towards ENC_POS. Thus, the position mismatch should not exceed 768
microsteps. That way, a velocity mode can be achieved where TMC4361 will always try to match the given velocity VMAX.
Further on, if the maximum velocity VMAX should not be exceeded, it is recommended to set PID_DV_CLIP = 0 and to
enable the velocity limit. This setting will allow a catch-up as the position mismatch is relatively small. Anyhow, if the encoder
is perfectly mounted and have a high resolution, it is possible that catch-up will be very slow or will not be achieved at all. If
so, set PID_DV_CLIP to a low value (e.g. between 1 and 1000) according to your maximum value VMAX.

ATTENTION Basically, this closed loop operation mode fits to the velocity ramp mode. Anyhow, it is not forbidden to

use positioning mode with the velocity closed loop operation mode. Due to the feasible permanent adaptations of the internal
position XACTUAL, it is possible that the internal ramp can miss the end point of the internal positioning ramp.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 19

www.trinamic.com

4 Current scaling during closed loop motor control
The TMC4361 provides a scaling unit which can also be used during closed loop operation. Thereby, energy can be saved
as long as no mismatch occur. Basically, up to four parameters can be set by assigning the SCALE_VALUES register 0x06
properly. The particular real resulting scale value of one of the parameters x (which will be introduced in the following) is
calculated by the following equation:

real_scale_value = (x + 1) / 256.

ATTENTION If TMC26x or TMC21xx motor (gate) driver are used in step direction mode and the current values should

be transferred via cover datagrams, only the 5 least significant bits of the current values are transmitted. Thus, following
equation holds true for this setup:

 real_scale_value = (x + 1) / 32

The subsequently introduced values are based on the current scaling with a maximum value of 255. If the StepDir mode with
scale value datagrams are used, please adapt the introduced values accordingly.

In register 0x06, the following values can be set:

- Closed loop maximum current scale value CL_IMAX = SCALE_VALUES(15:8): By setting this register, the
maximum current will be set. This current scale value is reached as soon as the position mismatch
ENC_POS_DEV exceeds the CL_BETA limit. If during TMC26x configuration (see section 3.3) the RMS current is
assigned as CS scale value, CL_IMAX can be set to 255. Otherwise, if the peak current IPEAK is set, CL_IMAX
should set to 180 due to the fact that √2 ∙ 256 = 181. Thus, the maximum current will not exceed IRMS. This is
especially crucial if the motion speed is low. Anyhow, larger values are possible (e.g. to overcome heavy loads),
but beware of overcurrent over a long run!

- Closed loop minimum current scale value CL_IMIN = SCALE_VALUES(7:0): The minimum scale value can be
set freely. It will be assigned as long as the position mismatch do not exceed a certain limit. This leads to current
saving behavior as long as the position mismatch is small. As good starting point, hold scale current settings for
open loop behavior can be assigned. For instance, with CL_IMIN = ¼ ∙ CL_IMAX = 180 / 4 = 45, up to 1/16 of the
maximum energy can be saved.

- The position mismatch limit in microsteps at which current scale values will be increased is defined by
CL_START_UP = SCALE_VALUES(23:16). The current scale value will be calculated according to a linear
function between CL_START_UP and CL_BETA. It is recommended to set CL_START_UP higher than
CL_TOLERANCE.

- CL_START_DN defines the position mismatch value at which the ramp down of the current values will start. It is
recommended, to set this parameter to 0 where this limit is set to CL_BETA. Hence, the downward ramp is the
same as the upward ramp. Other settings lead to a hysteresis.

In the next figure, the introduced parameters can be found. If the downward ramp is different compared to the upward ramp
(CL_START_DN > 0 CL_START_DN ≠ CL_START_UP), the linear function will be the same, resulting in a smaller position
mismatch where the minimum scale value is reached. If CL_START_UP is set to 0, closed loop minimum will be reached
almost never as the position mismatch is almost never equal to 0.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 20

www.trinamic.com

Figure 4.1 Current scaling value dependent on position mismatch during closed loop scaling modus in addition to
closed loop operation

For evaluating different upscaling and/or downscaling ramps the delay parameters CL_UPSCALE_DELAY (register 0x18)
and CL_DNSCALE_DELAY (register 0x19) can be assigned, too. These values define the period of time in clock cycles in
which the current scale value will be altered for one step towards CL_IMAX resp. CL_IMIN. Figure 4.2 depicts the current
scaling timing behavior as a function of CL_UPSACLE_DELAY and CL_DNSCALE_DELAY.

t
0

Actual Current Scale Target Value

Actual Current Scale Value

C
L_

U
P
S
C
A
LE

_D
EL

A
Y
=0

CL
_U

PS
CA

LE
_D

EL
AY>0

CL_DNSCALE_DELAY>0

C
L_D

N
S
C
A

LE_D
ELA

Y
=0

CL_IMAX

CL_IMIN

SCALE_PARAM

Figure 4.2 Current scaling timing behavior

After setting the closed loop scale values properly, closed loop scaling can be enabled: 0x8500000080.

ATTENTION Note that, even other scaling modes are enabled, any scale mode becomes disabled if closed loop

scaling is enabled!

SCALE_PARAM

0°

CL_IMIN

XACTUAL

 –CL_BETA CL_BETA

CL_IMAX

ENC_POS_DEV
[µSteps]

128

(45°)

256

(90°)

384

(135°)
-128

(-45°)

-256

(-90°)

-384

(-135°)

–CL_START_UP CL_START_UP

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 21

www.trinamic.com

4.1 Example for a combined usage of closed loop angle tracking and
current scaling

In the following a sequence is depicted which shows a rising deviation between the target position (internal position
XACTUAL = red vector) and the real motor position (external position ENC_POS = blue vector). Due to the settings of
CL_BETA = 255 (90°) the green dotted commutation angle will not change until the deviation exceed 90° here if
CL_DELTA_P = 1.0 (0x010000). Thus, the green commutation angle leads the motor to the target position inside of the 90°
deviation, but the green current vector will grow with the rising of the deviation to encounter the mismatch. It reaches its
maximum if the limit of 90° is reached. Then, the current vector will follow the external position with full current because no
steps should be lost.

Setup: CL_IMIN = 0.3 * IMAX (green circle),
 CL_IMAX = 0.9 * IMAX (orange circle),
 CL_STARTUP = 31.6° (90 microsteps)

1. Small deviation= 29.7°,
minimum current = 0.3 ∙ IMAX ,
position will be hold

2. Moderate deviation= 53.7°,
medium current = 0.53 ∙ IMAX,
position will be hold

3. Large deviation= 79.9°,
large current = 0.8 ∙ IMAX,
position will be hold

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 22

www.trinamic.com

4. Very large deviation > 90°,
maximum current = 0.9 ∙ IMAX,
„Motor follows encoder/load“

5. The overload siuation holds on,
maximum current = 0.9 ∙ IMAX,
„Motor follows encoder/load“

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 23

www.trinamic.com

5 Considering the back-EMF
When higher velocities are reached, a phase shift between current and voltage occurs at the motor coils. The current control
will be transferred in a voltage control. This motor and setup dependent effect have to be compensated as currents will be
still assigned for the motor control. This can be done by the γ-correction where a velocity dependent angle in motion
direction will be added to the current commutation angle.

Figure 5.1 Back-EMF consideration with γ-correction unit based on measured encoder velocity

The maximum gamma angle can be set to almost 90° (= 255 microsteps) at CL_GAMMA 0x1C(23:16). Due to the fact that
his angle is added to the commutation angle, the complete angle can be reach 180° if CL_BETA is also set 90°
(= 255 microsteps).

ATTENTION If the γ-correction is turn on, the maximum possible commutation will be (CL_BETA + CL_GAMMA).

This value must not exceed 180° (512 microsteps at 256 microsteps per fullstep) because angles of 180° and more will
result in unwanted motion direction changes!

Switching on γ-correction, set cl_emf_en to ‘1’ in the ENC_IN_CONF register 0x07. Furthermore, the velocity limits for the
γ-correction have to be assigned:

ENC_IN_CONF && 0x00FE7FFFFF || 0x8702400000

- CL_VMIN_EMF 0x60: Below this velocity value [pps] the γ-correction angle is set to 0.
- CL_VADD_EMF 0x61: This velocity value [pps] will be added to CL_VMIN_EMF to assign the

upper limit for maximum γ-correction angle.

- Beyond (CL_VMIN_EMF + CL_VADD_EMF) the current γ-correction angle GAMMA will be
set to the maximum value of CL_GAMMA

- Between CL_MIN_EMF and (CL_VMIN_EMF + CL_VADD_EMF) the current γ-correction
angle GAMMA will be calculated by a linear function which is depicted in the following figure

Figure 5.2 Calculation of the current back emf angle GAMMA

Closed Loop Unit

+gamma
Driver

-gamma

(velocity dependent)

Motor

Encoder and/or

Current

Measurement

GAMMA

Usually 255 (=90°)

V_ENC_MEANCL_VMIN_EMF

CL_VADD_EMF

CL_GAMMA

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 24

www.trinamic.com

5.1 Velocity Setup
Setting CL_VMIN_EMF and CL_VADD_EMF properly is motor dependent. Thus, connect a current probe to one phase of
the motor cables and a voltage probe on the same signal line. To set appropriate velocity limits please observe the distortion
of the motor current curve. Figure 5.3 depicts a oscilloscope shot where no distortion of the motor current is observed which
should be the normal case during low velocities.

Figure 5.3 Oscilloscope shot of a motor signal line (green= motor current, magenta= motor output driver sense
resistor voltage) when the current curve is not be distorted

A good starting value for CL_VMIN_EMF is the velocity when the back emf voltage reaches the motor supply voltage. At this
point first slight distortions of the motor currents should be observed at the oscilloscope as shown in Figure 5.4.

Figure 5.4 Oscilloscope shot of a motor signal line (green= motor current, magenta= motor output driver sense
resistor voltage) when the current curve will begin to be distorted due to an increased back emf voltage

The velocity at which the motor currents are completely distorted firstly is a good starting value for the velocity when GAMMA
will be reach its maximum of CL_GAMMA (mostly 90°). Thus, CL_VADD_EMF will be this velocity subtracted by
CL_VMIN_EMF. Another indicator for reaching the maximum velocity for γ-correction is the vanishing of chopper cycles in
the voltage curve of the sense resistor as it can be also seen in Figure 5.5 if the chopper control is turned on.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 25

www.trinamic.com

Figure 5.5 Oscilloscope shot of a motor signal line (green= motor current, magenta= motor output driver sense
resistor voltage) when the current curve is completely distorted due to the back emf voltage at high velocities.
Further on, no chopper cycles can be identified in the magenta voltage curve.

It is also possible to plot the maximum motor current (maximum amplitude of the motor current) vs. the ramp velocity. At the
breaking points, both velocity limits can be identified.

Figure 5.6 Plotting maximum amplitude of the motor current over the motor velocity will also lead to the
identification of the velocity limits for the γ-correction

ATTENTION To get most sufficient result for motor behavior with γ-correction usage, all motor lines should be

analyzed for the velocity limits.
Further on, tweaking the first guess limits slightly can also result in better motor motion behavior.

Motor Velocity [pps]

Maximum Motor
current amplitude

CL_VMIN_EMF

CL_VADD_EMF

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 26

www.trinamic.com

5.2 Velocity calculation
As it can be seen from Figure 5.2, the trimming is based on the real motor velocity. This velocity ENC_VEL [pps] is
calculated internally by TMC4361 and will be released at register 0x65. For a correct correction algorithm the encoder
velocity have to be filtered (V_ENC_MEAN 0x66 [pps]). The filtering is done by the following equation:

 𝑉𝐸𝑁𝐶𝑀𝐸𝐴𝑁
= 𝑉𝐸𝑁𝐶𝑀𝐸𝐴𝑁

−
𝑉𝐸𝑁𝐶𝑀𝐸𝐴𝑁

2𝐸𝑁𝐶_𝑉𝑀𝐸𝐴𝑁_𝐹𝐼𝐿𝑇𝐸𝑅 +
𝑉𝐸𝑁𝐶

2𝐸𝑁𝐶_𝑉𝑀𝐸𝐴𝑁_𝐹𝐼𝐿𝑇𝐸𝑅

Besides the filter exponent, further parameters can be set a register 0x63 for different encoder types to adapt the closed
control with back-EMF consideration:

Parameter Incremental ABN encoder Absolute SPI/SSI encoder

ENC_VMEAN_WAIT

Delay period [#clock cycles] between two subsequent transfers from V_ENC for the
V_ENC_MEAN calculation procedure

à sample rate for mean velocity calculation = 1 / ENC_VMEAN_WAIT

ENC_VMEAN_WAIT > 32

8bit at 0x63(7:0)

Automatically set to the assigned encoder
update rate SER_PTIME 0x58

ENC_VMEAN_FILTER
Filer exponent for encoder mean velocity calculation

4bit at 0x63(11:8)

ENC_VMEAN_INT

Maximum update delay period [#clock cycles] for the V_ENC calculation

16bit at 0x63(31:16)

If ENC_VMEAN_INT < 256, it will be set
automatically to 256!

Automatically set to the assigned encoder
update rate SER_PTIME 0x58

CL_CYCLE

Delay period [#clock cycles] for the closed loop control

à closed loop control update rate = 1 / CL_CYCLE

Fixed for ABN encoders for a minimum
possible delay (mostly 5 clock cycles)

16bit at 0x63(31:16)

Set to at least SER_PTIME 0x58

SER_ENC_VARIATION

--- 8bit at 0x63(7:0)

Adaptation of maximum accepted deviation
between two consecutive encoder values

If set to 0: maximum accepted deviation
 = 1/8 ∙ ENC_IN_RES

Else: maximum accepted deviation
= 1/8 ∙SER_ENC_VARIATION/256 ∙ ENC_IN_RES

serial_enc_variation_limit has to be set to ‘1’
(ENC_IN_RES register 0x07)

HINT A good starting value for ENC_VMEAN_WAIT is 128 and for ENC_VMEAN_FILTER is 7. Both values should be

adapted in conjunction if ABN encoders are used. Further on, the lower both values are the faster the V_ENC_MEAN is
adapted to the current velocity. But this also results in higher gradients of the mean velocity which can lead to regulation
jumps if the γ correction is enabled.
To prevent this, check the V_ENC_MEAN velocity values during motion transferring the velocity limits CL_VMIN_EMF and
(CL_VMIN_EMF + CL_VADD_EMF). If the mean encoder velocity is adapted smoothly during motion γ-correction will be
also executed properly.

Further on, ENC_VEL0 0x62 assigns the delay in number of clock cycles which sets the encoder velocity V_ENC and
V_ENC_MEAN to 0! If the signals of the AB lines will not switch during this time period or the absolute encoder values will
not change, the encoder velocity will be set to 0.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 27

www.trinamic.com

ATTENTION TMC4361-LA only: If the absolute encoder switches its direction the first new encoder velocity will be 0!

Thus, if the encoder values are toggling the encoder positions in such a way that direction changes are produced during
motion, this can lead to V_ENC = V_ENC_MEAN = 0. This will result in an incorrect γ-correction if CL_VMIN_EMF has been
already exceeded.

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 28

www.trinamic.com

6 Examples
In the following complete examples are illustrated by assigning the different registers.

Example 1: Motor driver TMC26x (SPI mode) is used with an incremental ABN encoder; back-emf
is not considered; simple calibration process

The following closed loop calibration process is simplified to one movement which can lead to torque loss during closed loop
operation if the calibration point is not selected well.

Preliminary considerations:

- Non-differential ABN encoder
- No back-emf consideration
- Catch-up velocity limit = ±50 kpps
- 400 full steps per revolution
- IRMS = 1.1 A, Sense resistor: RSENSE = 0.15 Ω
- VSENSE = 0 à IFS = 2.0 A
- IPEAK = IRMS ∙ √2 = 1.56 A à CS = 24
- Encoder direction is inverted to motor direction

Sequence of register access:

Sequence Comments Order µCàTMC4361

1. Differential encoder off 0x8000007020

2. 256 microsteps per full step, 400 full steps per revolution 0x8A00001900

3.
Filtering of encoder input signals
(Sample rate = fCLK / 8, filter length = 4)

0x8300003300

4.
SPI output configuration: Current datagrams for TMC26x
(SPI_OUT_BLOCK_TIME / SPI_OUT_HIGH_TIME / SPI_OUT_LOW_TIME =
8/4/4 clock cycles)

0x848440000A

5. Assign COVERDONE as INTR 0x8D02000000

6. Clear events 0x0E00000000

7.
Set the DRVCTRL register of TMC26x/389 (cover datagram): single edge steps,
disable step interpolation, microstep resolution: 256

0xEC00000000

8. Wait for an interrupt and then clear events. …0x0E00000000

9.
Set the CHOPCONF register of TMC26x/389 (cover datagram): tbl=36, standard
chopper, HDEC=16, HEND=11, HSTR=1, TOFF=5, RNDTF=off

0xEC00090585

10. Wait for an interrupt and then clear events. …0x0E00000000

11. Disable the SMARTEN register of TMC26x/389 (cover datagram) 0xEC000A0000

12. Wait for an interrupt and then clear events. …0x0E00000000

13.
Set the SGCSCONF register of TMC26x/389 (cover datagram): SGT=0,
CS=24

0xEC000C0018

14. Wait for an interrupt and then clear events. …0x0E00000000

15.
Set the DRVCONF register of TMC26x/389 (cover datagram): SLPH=3, SLPL=3,
DISS2G=off, TS2G=0-3.2us, SDOFF=on, VSENSE=0

0xEC000EF080

16. Wait for an interrupt and then clear events. …0x0E00000000

17.
Encoder resolution: 1000 pole pairs à ENC_IN_RES = 4000
(à ENC_CONST = 25.6)

0xD400000FA0

18. Invert encoder direction 0x8720000000

19. CL setup: CL_BETA = 255, CL_GAMMA = 0 0x9C000000FF

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 29

www.trinamic.com

20. CL_DELTA_P = 1.25 0xDC00014000

21. CL_TOLERANCE = 32 (slightly above ENC_CONST) 0xDF00000020

22. Disable current scaling 0x8500000000

23. Hold and positioning mode for full step calibration 0xA000000004

24. Any velocity (here: 10 kpps) (VMAX has 8 decimal places!) 0xA400271000

25. Read out MSCNT 0x7900000000

26. Read out XACTUAL 0x2100000000

27. Set XTARGET = XACTUAL + 384 - (MSCNT mod 256) 0xB7xxxxxxxx

28.
Wait for until TARGET_REACHED is set again
(can also be set as interrupt!)

…

29. Turn on closed loop operation and calibration 0x8721400000

30. Wait for 10us and then turn off closed loop calibration …0x8720400000

31. Proportional term for velocity limitation = 1000 0xDA000003e8

32. Integral term for velocity limitation = 50 0xDB00000032

33. Clipping value for catch-up velocity = 50 kpps 0xDE0000C350

34. Clipping value for integral term = 1000 0xDD000003e8

35. Turn on velocity limit for closed loop operation 0x8728400000

36.
Current scale limits:
CL_IMAX = 255, CL_IMIN = 100, CL_START_UP = 100

0x860064FF64

37. CL_UPSCALE = 1000 clock cycles 0x98000003E8

38. CL_DNSCALE = 100000 clock cycles 0x99000186A0

39. Enable closed loop scaling 0x8500000080

40.
CL_TR_TOLERANCE = 60 (if absolute position mismatch is smaller than 3
encoder transitions, TARGET_REACHED can be set)

0xD20000003C

41. Set VMAX = 0 to prevent unwanted ramp starting 0xA400000000

42. Set ramp conditions according to the required setup…

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 30

www.trinamic.com

Example 2: Motor driver TMC26x (SPI mode) is used with an incremental differential ABN
encoder; advanced calibration process

Preliminary considerations:

- Differential ABN encoder
- Back-emf consideration
- Catch-up velocity limit = ±50 kpps
- 200 full steps per revolution
- IRMS = 1.1 A, Sense resistor: RSENSE = 0.15 Ω
- VSENSE = 0 à IFS = 2.0 A
- IPEAK = IRMS ∙ √2 = 1.56 A à CS = 24

Sequence of register access:

Sequence Comments Order µCàTMC4361

1. Differential encoder on 0x8000006020

2. 256 microsteps per full step, 200 full steps per revolution 0x8A00000C80

3.
Filtering of encoder input signals
(Sample rate = fCLK / 8, filter length = 4)

0x8300003300

4.
SPI output configuration: Current datagrams for TMC26x
(SPI_OUT_BLOCK_TIME / SPI_OUT_HIGH_TIME / SPI_OUT_LOW_TIME =
8/4/4 clock cycles)

0x848440000A

5. Assign COVERDONE as INTR 0x8D02000000

6. Clear events 0x0E00000000

7.
Set the DRVCTRL register of TMC26x/389 (cover datagram): single edge steps,
disable step interpolation, microstep resolution: 256

0xEC00000000

8. Wait for an interrupt and then clear events. …0x0E00000000

9.
Set the CHOPCONF register of TMC26x/389 (cover datagram): tbl=36, standard
chopper, HDEC=16, HEND=11, HSTR=1, TOFF=5, RNDTF=off

0xEC00090585

10. Wait for an interrupt and then clear events. …0x0E00000000

11. Disable the SMARTEN register of TMC26x/389 (cover datagram) 0xEC000A0000

12. Wait for an interrupt and then clear events. …0x0E00000000

13.
Set the SGCSCONF register of TMC26x/389 (cover datagram): SGT=0,
CS=24

0xEC000C0018

14. Wait for an interrupt and then clear events. …0x0E00000000

15.
Set the DRVCONF register of TMC26x/389 (cover datagram): SLPH=3, SLPL=3,
DISS2G=off, TS2G=0-3.2us, SDOFF=on, VSENSE=0

0xEC000EF080

16. Wait for an interrupt and then clear events. …0x0E00000000

17.
Encoder resolution: 500 pole pairs à ENC_IN_RES = 2000
(à ENC_CONST = 25.6)

0xD4000007D0

18. Read out XACTUAL 0x2100000000

19. Set ENC_POS = XACTUAL 0xD0xxxxxxxx

20. Hold and positioning mode for full step calibration 0xA000000004

21. Any velocity (here: 10 kpps) (VMAX has 8 decimal places!) 0xA400271000

22. Set XTARGET = XACTUAL + 51200 0xB7xxxxxxxx

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 31

www.trinamic.com

23.
Wait for until TARGET_REACHED is set again.
(can also be set as interrupt!)

…

24. Read out ENC_POS 0x5000000000

24. a)
If ENC_POS ≈ XTARGET
(slight variances can occur due to encoder resolution), encoder and motor
direction are equal

24. b1)
If ENC_POS ≈ XTARGET - 102400
(slight variances can occur due to encoder resolution),
encoder & motor direction are inverted à Invert encoder direction

0x8720000000

24. b2) Set ENC_POS = XACTUAL 0xD0xxxxxxxx

25. CL setup: CL_BETA = 255, CL_GAMMA = 255 0x9C00FF00FF

26. Set CL_DELTA_P = 1.00 0xDC00010000

27. Set CL_TOLERANCE = 32 (slightly above ENC_CONST) 0xDF00000020

28.
Set CL_TR_TOLERANCE = 60 (if absolute position mismatch is smaller than 3
encoder transitions, TARGET_REACHED can be set)

0xD20000003C

29. Disable current scaling 0x8500000000

30. Read out MSCNT 0x7900000000

31. Read out XACTUAL 0x2100000000

32.
Set XTARGET = XACTUAL + 384 - (MSCNT mod 256)
(Move to fullstep position)

0xB7xxxxxxxx

33.
Wait for until TARGET_REACHED is set again.
(can also be set as interrupt!)

…

34. Read out ENC_POS_DEV. 0x5200000000

34. a)
Storage of minimum and maximum encoder deviations:
If ENC_POS_DEV < DEV_MIN à DEV_MIN = ENC_POS_DEV
If ENC_POS_DEV > DEV_MAX à DEV_MAX = ENC_POS_DEV

35. Move to next fullstep position XTARGET = XTARGET + 256 0xB7xxxxxxxx

36.
Repeat steps 33..35 400 times (2 revolutions)
It is recommended to also move into the opposite direction.

37. Check DEV_SEARCH = (DEV_MAX + DEV_MIN) / 2

38. Move to next fullstep position XTARGET = XTARGET - 256 0xB7xxxxxxxx

39.
Wait for until TARGET_REACHED is set again.
(can also be set as interrupt!)

…

40.
Seek of the calibration point:
If ENC_POS_DEV ≈ DEV_SEARCH à CALIB_POS = XTARGET

 Repeat steps 38..30 400 times at most (2 revolutions) and define CALIB_POS

41. Set XTARGET = CALIB_POS 0xB7xxxxxxxx

42. Turn on closed loop operation and calibration 0x87x1400000

43. Wait for 10us and then turn off closed loop calibration …0x87x0400000

44. Proportional term for velocity limitation = 1000 0xDA000003e8

45. Integral term for velocity limitation = 50 0xDB00000032

46. Clipping value for catch-up velocity = 50 kpps 0xDE0000C350

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 32

www.trinamic.com

47. Clipping value for integral term = 1000 0xDD000003e8

48. Turn on velocity limit for closed loop operation 0x87x8400000

49.
Set CL_VMIN_EMF
(velocity limits have to be found by open loop movements before)
(see chapter 5)

0xE0xxxxxxxx

50.
Set CL_VADD_EMF
(velocity limits have to be found by open loop movements before)
(see chapter 5)

0xE1xxxxxxxx

51. Set encoder mean velocity settings (see section 5.2) 0xE3xxxxxxxx

52. Turn on back-emf consideration for closed loop operation 0x87xA400000

53.
Current scale limits:
CL_IMAX = 255, CL_IMIN = 100, CL_START_UP = 100

0x860064FF64

54. CL_UPSCALE = 200 clock cycles 0x98000007D0

55. CL_DNSCALE = 100000 clock cycles 0x99000186A0

56. Enable closed loop scaling 0x8500000080

57. Set VMAX = 0 to prevent unwanted ramp starting 0xA400000000

58. Set ramp conditions according to the required setup…

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 33

www.trinamic.com

Example 3: Motor driver TMC2130 (SPI mode) is used with an incremental ABN encoder;
back-emf is not considered; simple calibration process
The following closed loop calibration process is simplified to one movement which can lead to torque loss during closed loop
operation if the calibration point is not selected well.

Preliminary considerations:

- Non-differential ABN encoder
- No back-emf consideration
- Catch-up velocity limit = ±50 kpps
- 400 full steps per revolution
- IRMS = 1.1 A, Sense resistor: RSENSE = 0.15 Ω
- VSENSE = 0 à IFS = 1.88 A
- IPEAK = IRMS ∙ √2 = 1.56 A à CS = 25 (à Maximum value set in TMC2130)
- Encoder direction is inverted to motor direction

Sequence of register access:

Sequence Comments Order µCàTMC4361

1. Differential encoder off 0x8000007020

2. 256 microsteps per full step, 400 full steps per revolution 0x8A00001900

3.
Filtering of encoder input signals
(Sample rate = fCLK / 8, filter length = 4)

0x8300003300

4.
SPI output configuration: Current datagrams for TMC2130 SPI mode
(SPI_OUT_BLOCK_TIME / SPI_OUT_HIGH_TIME / SPI_OUT_LOW_TIME =
8/4/4 clock cycles)

0x848440000D

5. Assign COVERDONE as INTR 0x8D02000000

6. Clear events 0x0E00000000

7.
Set the GCONF register of TMC2130 (cover datagrams): direct_mode=1, Set any
other switch of this register according to your requirements

0xED00000080

0xEC00010000

8. Wait for an interrupt and then clear events. …0x0E00000000

9.
Set the CHOPCONF register of TMC2130 (cover datagrams): 256 microsteps,
vsense=0, TBL=36 clock cycles, spread cycle chopper, HEND=1, HSTRT=2,
TOFF=3

0xED000000EC

0xEC00010223

10. Wait for an interrupt and then clear events. …0x0E00000000

11.
Set the IHOLD_IRUN register of TMC2130 (cover datagrams):
IHOLD_DELAY=5=0, IHOLD=IRUN=25

0xED00000090

0xEC00051919

12. Wait for an interrupt and then clear events. …0x0E00000000

13. Set any other register of TMC2130 according to your requirements
0xED000000xx

0xECxxxxxxxx

14. Wait for an interrupt and then clear events. …0x0E00000000

15. Repeat steps 13 and 14 until all relevant registers are set.

16. Clear events 0x0E00000000

17.
Encoder resolution: 1000 pole pairs à ENC_IN_RES = 4000
(à ENC_CONST = 25.6)

0xD400000FA0

18. Invert encoder direction 0x8720000000

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 34

www.trinamic.com

19. CL setup: CL_BETA = 255, CL_GAMMA = 0 0x9C000000FF

20. CL_DELTA_P = 1.25 0xDC00014000

21. CL_TOLERANCE = 32 (slightly above ENC_CONST) 0xDF00000020

22. Disable current scaling 0x8500000000

23. Hold and positioning mode for full step calibration 0xA000000004

24. Any velocity (here: 10 kpps) (VMAX has 8 decimal places!) 0xA400271000

25. Read out MSCNT 0x7900000000

26. Read out XACTUAL 0x2100000000

27. Set XTARGET = XACTUAL + 384 - (MSCNT mod 256) 0xB7xxxxxxxx

28.
Wait for until TARGET_REACHED is set again
(can also be set as interrupt!)

…

29. Turn on closed loop operation and calibration 0x8721400000

30. Wait for 10us and then turn off closed loop calibration …0x8720400000

31. Proportional term for velocity limitation = 1000 0xDA000003e8

32. Integral term for velocity limitation = 50 0xDB00000032

33. Clipping value for catch-up velocity = 50 kpps 0xDE0000C350

34. Clipping value for integral term = 1000 0xDD000003e8

35. Turn on velocity limit for closed loop operation 0x8728400000

36.
Current scale limits:
CL_IMAX = 255, CL_IMIN = 100, CL_START_UP = 100

0x860064FF64

37. CL_UPSCALE = 1000 clock cycles 0x98000003E8

38. CL_DNSCALE = 100000 clock cycles 0x99000186A0

39. Enable closed loop scaling 0x8500000080

40.
CL_TR_TOLERANCE = 60 (if absolute position mismatch is smaller than 3
encoder transitions, TARGET_REACHED can be set)

0xD20000003C

41. Set VMAX = 0 to prevent unwanted ramp starting 0xA400000000

42. Set ramp conditions according to the required setup…

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 35

www.trinamic.com

Example 4: Motor driver TMC2130 (SD mode) is used with an incremental differential ABN
encoder; advanced calibration process

Preliminary considerations:

- Differential ABN encoder
- Back-emf consideration
- Catch-up velocity limit = ±50 kpps
- 200 full steps per revolution
- IRMS = 1.1 A, Sense resistor: RSENSE = 0.15 Ω
- VSENSE = 0 à IFS = 1.88 A
- IPEAK = IRMS ∙ √2 = 1.56 A à CS = 25 (à Maximum value set in scale register of TMC4361)

Sequence of register access:

Sequence Comments Order µCàTMC4361

1. Differential encoder on 0x8000006020

2. 256 microsteps per full step, 200 full steps per revolution 0x8A00000C80

3.
Filtering of encoder input signals
(Sample rate = fCLK / 8, filter length = 4)

0x8300003300

4.
SPI output configuration: Current datagrams for TMC2130 SD mode
(SPI_OUT_BLOCK_TIME / SPI_OUT_HIGH_TIME / SPI_OUT_LOW_TIME =
8/4/4 clock cycles; scaling values are transferred during motion)

0x848440022C

5. Assign COVERDONE as INTR 0x8D02000000

6. Clear events 0x0E00000000

7.
Set the GCONF register of TMC2130 (cover datagrams): direct_mode=0, Set any
other switch of this register according to your requirements

0xED00000080

0xEC00000000

8. Wait for an interrupt and then clear events. …0x0E00000000

9.
Set the CHOPCONF register of TMC2130 (cover datagrams): 256 microsteps,
vsense=0, TBL=36 clock cycles, spread cycle chopper, HEND=1, HSTRT=2,
TOFF=3

0xED000000EC

0xEC00010223

10. Wait for an interrupt and then clear events. …0x0E00000000

11.
Set the IHOLD_IRUN register of TMC2130 (cover datagrams):
IHOLD_DELAY=5=0, IHOLD=10; IRUN=25

0xED00000090

0xEC00050A19

12. Wait for an interrupt and then clear events. …0x0E00000000

13. Set any other register of TMC2130 according to your requirements
0xED000000xx

0xECxxxxxxxx

14. Wait for an interrupt and then clear events. …0x0E00000000

15. Repeat steps 13 and 14 until all relevant registers are set.

16. Clear events 0x0E00000000

17.
Encoder resolution: 500 pole pairs à ENC_IN_RES = 2000
(à ENC_CONST = 25.6)

0xD4000007D0

18. Read out XACTUAL 0x2100000000

19. Set ENC_POS = XACTUAL 0xD0xxxxxxxx

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 36

www.trinamic.com

20. Hold and positioning mode for full step calibration 0xA000000004

21. Any velocity (here: 10 kpps) (VMAX has 8 decimal places!) 0xA400271000

22. Set XTARGET = XACTUAL + 51200 0xB7xxxxxxxx

23.
Wait for until TARGET_REACHED is set again.
(can also be set as interrupt!)

…

24. Read out ENC_POS 0x5000000000

24. a)
If ENC_POS ≈ XTARGET
(slight variances can occur due to encoder resolution), encoder and motor
direction are equal

24. b1)
If ENC_POS ≈ XTARGET - 102400
(slight variances can occur due to encoder resolution),
encoder & motor direction are inverted à Invert encoder direction

0x8720000000

24. b2) Set ENC_POS = XACTUAL 0xD0xxxxxxxx

25. CL setup: CL_BETA = 255, CL_GAMMA = 255 0x9C00FF00FF

26. Set CL_DELTA_P = 1.00 0xDC00010000

27. Set CL_TOLERANCE = 32 (slightly above ENC_CONST) 0xDF00000020

28.
Set CL_TR_TOLERANCE = 60 (if absolute position mismatch is smaller than 3
encoder transitions, TARGET_REACHED can be set)

0xD20000003C

29. Disable current scaling 0x8500000000

30. Read out MSCNT 0x7900000000

31. Read out XACTUAL 0x2100000000

32.
Set XTARGET = XACTUAL + 384 - (MSCNT mod 256)
(Move to fullstep position)

0xB7xxxxxxxx

33.
Wait for until TARGET_REACHED is set again.
(can also be set as interrupt!)

…

34. Read out ENC_POS_DEV. 0x5200000000

34. a)
Storage of minimum and maximum encoder deviations:
If ENC_POS_DEV < DEV_MIN à DEV_MIN = ENC_POS_DEV
If ENC_POS_DEV > DEV_MAX à DEV_MAX = ENC_POS_DEV

35. Move to next fullstep position XTARGET = XTARGET + 256 0xB7xxxxxxxx

36.
Repeat steps 33..35 400 times (2 revolutions)
It is recommended to also move into the opposite direction.

37. Check DEV_SEARCH = (DEV_MAX + DEV_MIN) / 2

38. Move to next fullstep position XTARGET = XTARGET - 256 0xB7xxxxxxxx

39.
Wait for until TARGET_REACHED is set again.
(can also be set as interrupt!)

…

40.
Seek of the calibration point:
If ENC_POS_DEV ≈ DEV_SEARCH à CALIB_POS = XTARGET

 Repeat steps 38..30 400 times at most (2 revolutions) and define CALIB_POS

41. Set XTARGET = CALIB_POS 0xB7xxxxxxxx

42. Turn on closed loop operation and calibration 0x87x1400000

43. Wait for 10us and then turn off closed loop calibration …0x87x0400000

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 37

www.trinamic.com

44. Proportional term for velocity limitation = 1000 0xDA000003e8

45. Integral term for velocity limitation = 50 0xDB00000032

46. Clipping value for catch-up velocity = 50 kpps 0xDE0000C350

47. Clipping value for integral term = 1000 0xDD000003e8

48. Turn on velocity limit for closed loop operation 0x87x8400000

49.
Set CL_VMIN_EMF
(velocity limits have to be found by open loop movements before)
(see chapter 5)

0xE0xxxxxxxx

50.
Set CL_VADD_EMF
(velocity limits have to be found by open loop movements before)
(see chapter 5)

0xE1xxxxxxxx

51. Set encoder mean velocity settings (see section 5.2) 0xE3xxxxxxxx

52. Turn on back-emf consideration for closed loop operation 0x87xA400000

53.
Current scale limits:
CL_IMAX = 25, CL_IMIN = 10, CL_START_UP = 50

0x860032190A

54. CL_UPSCALE = 200 clock cycles 0x98000007D0

55. CL_DNSCALE = 100000 clock cycles 0x99000186A0

56. Enable closed loop scaling 0x8500000080

57. Set VMAX = 0 to prevent unwanted ramp starting 0xA400000000

58. Set ramp conditions according to the required setup…

TMC4361 Closed Loop App Note (Rev. 0.992 / 2017-Jan-16, Preliminary 38

www.trinamic.com

7 Revision History

7.1 Document Revisions
Version Date Author Description

0.5 2014-Aug-11 HS Initial version

0.6 2014-Aug-26 HS Clarifications
Reference to CL_MAX und CL_FIT events and flag
Initial back emf notes

0.9 2014-Nov-21 HS Clarifications
Enc Compensation added
Back-EMF-consideration written out in full (scope shots and settings
for VMIN_EMF and VADD_EMF are still missing and in progress)

0.91 2015-Feb-06 HS Hints added in chapter 5
Revision of all chapters

0.92 2015-Apr-15 HS 90° = 255 microsteps

0.93 2015-Apr-17 HS Review of example 1, example2 added

0.93 2015-Nov-10 HS MSTEP_PER_FS MUST be 256!, added

0.99 2016-Jun-03 HS Sections considering TMC2130 added

0.991 2016-Jul-21 HS Advanced calibration process in examples: Step40
“If ENC_POS_DEV ≈ DEV_SEARCH à CALIB_POS = XTARGET”
Instead of
“If ENC_POS_DEV ≈ DEV_MIN à CALIB_POS = XTARGET”

0.992 2017-Jan-16 HS Advanced calibration process in examples: Step37
“Check DEV_SEARCH = (DEV_MAX + DEV_MIN) / 2”
Instead of
“Check DEV_SEARCH = (DEV_MAX - DEV_MIN) / 2”

Table 1 Document Revisions

